

OBRAZOVNI MATERIJAL ZA STRUČNO USAVRŠAVANJE NASTAVNIKA STRUKOVNIH PREDMETA

Modul:

Razvoj stručnih sadržaja i sadržaja za učenje (MI 2)

Autor:

Neven Maleš, mag. ing. mech.

Opis modula

MI2 (S1)					
Naziv modula	Razvoj stručnih sadržaja i sadržaja za učenje				
CILJ MODULA	CILJ MODULA				
Razvoj kompetencija p	otrebnih za osmišljavanje, razvoj i izradu stručnih sadržaja i sadržaja				
za učenje i podučavanj	je.				
OPIS/ SADRŽAJI MO	DULA				
 Kroz ovaj n	nodul polaznici će se upoznati s osnovnim principima izrade				
obrazovnog	g sadržaja od analize potreba, korisnika i konteksta, do alata				
i tehničkih	aspekata izrade sadržaja u digitalnom formatu.				
 Istražit će	i isprobati različite alate za izradu digitalnih sadržaja, te				
osmisliti i p	praktično izrađivati manje dijelove sadržaja.				
 Polaznike ć	če se prilikom osmišljavanja i izrade sadržaja poticati na				
primjenu s	uvremenih pristupa učenju i podučavanju.				
 Mogućnosti	izrade i ponovnog korištenja otvorenih obrazovnih resursa te				
različiti mod	eli licenciranja izrađenih obrazovnih materijala.				
ISHODI UČENJA ZA I	MODUL				
Nakon uspješno završe	nog modula polaznik će moći:				
 osmisliti ol 	prazovni sadržaj i razraditi proces njegove izrade				
 identificira	ti digitalne alate i platforme za izradu sadržaja te analizirati				
njihove kar	rakteristike i mogućnosti primjene				
 izraditi vlas	stiti sadržaj za potrebe nastave strukovnih predmeta u skladu				
s pedagošl	kim načelima i tehničkim zahtjevima uz suvremeni pristup				
učenju i po	dučavanju.				

Razrada obrazovnog materijala u okviru modula

OBNOVLJIVI IZVORI ENERGIJE OSNOVE SUNČEVE ENERGIJE I FOTONAPONA

Sunce je najvažniji izvor energije za sve prirodne procese na planetu Zemlji. Razvoj biljnog i životinjskog svijeta ovisi o toplini dozračenoj iz Sunca, kao i mnogi procesi u prirodi, poput fotosinteze. Suvremene metode proizvodnje energije na Zemlji koriste energiju Sunčevog zračenja, bilo da se radi o izravnom ili posrednom korištenju. Neposredni načini korištenja Sunčeve energije su fosilna goriva (nafta, ugljen) stvarana milijunima godina iz ostataka biljnog i životinjskog svijeta, ali i većina energetskih oblika koji se definiraju kao obnovljivi, poput energije vjetra, energije vodotoka i energije pohranjene u obliku biomase.

Fotovoltaik (PV) ili fotonaponski sustavi služe za direktnu proizvodnju električne energije iz sunčevog zračenja, a da pri tome nema štetnih emisija u okoliš, tj. na najugodniji prirodni način. Znanost koja se time bavi zove se fotovoltaika (engl. Photovoltaics). Ovakva postrojenja za proizvodnju električne energije se grade za dugotrajno korištenje (više od 30 godina) uz najniže troškove održavanja. U PV sustav spadaju sve komponente koje pretvaraju sunčevu energiju u električnu energiju i koje stvaraju napon prilagođen potrošačima i uređajima za akumuliranje. U PV sustav su uključeni i svi uređaji za zaštitu i osiguranje. Osnova svakog fotonaponskog sustava su sunčane ćelije koje generiraju električnu struju kada se izlože izvoru svjetla. Svaka ćelija sastoji se od slojeva poluvodičkog materijala. Prilikom obasjavanja ćelije, između dvaju slojeva, stvara se električno polje, te se generira električna struja, ovisno o intenzitetu svjetlosti. Fotonaponskim sustavima za rad nije isključivo potrebna izravna komponenta Sunčevog zračenja, već oni proizvode električnu energiju i iz raspršene komponente tijekom oblačnih i kišnih dana. Cjelokupni PV sustav zovemo **sunčanom elektranom**.

Solarni fotonaponski sustavi

Solarni fotonaponski sustavi (FN) mogu se podijeliti na dvije osnovne skupine:

- fotonaponski sustavi priključeni na javnu elektroenergetsku mrežu (engl. on-grid)
- fotonaponski sustavi koji nisu priključeni na mrežu (engl. *off-grid*), a često se nazivaju
 i samostalnim sustavima (engl. *stand-alone systems*)

Fotonaponski sustavi koji nisu priključeni na mrežu, odnosno samostalni sustavi, mogu biti sa ili bez pohrane energije, što će ovisiti o vrsti primjene i načinu potrošnje energije, i hibridni

sustavi koji mogu biti s vjetroagregatom, kogeneracijom, dizelskim generatorom ili gorivnim člancima. Fotonaponski sustavi priključeni na javnu elektroenergetsku mrežu mogu biti izravno priključeni na javnu elektroenergetsku mrežu ili priključeni na javnu elektroenergetsku mrežu preko kućne instalacije. Fotonaponski sustavi priključeni na javnu mrežu preko kućne instalacije pripadaju distribuiranoj proizvodnji električne energije i priključeni su uglavnom na niskonaponsku razinu elektroenergetskog sustava.

Slika 1. Fotonaponski sustavi priključeni na javnu mrežu preko kućne instalacije

Glavni dijelovi fotonaponskog sustava su:

- 1. fotonaponski moduli
- 2. spojna kutija sa zaštitnom opremom
- 3. kablovi istosmjernog razvoda
- 4. glavna sklopka za odvajanje
- 5. izmjenjivač dc/ac
- 6. kablovi izmjeničnog razvoda
- 7. brojila predane i preuzete električne energije

Prednosti fotonaponskih sustava spojenih na javnu elektroenergetsku mrežu preko kućne instalacije su sljedeće:

- proizvodi se ekološki čista električna energija bez onečišćenja okoliša
- sva se pretvorba energije obavljala u blizini mjesta potrošnje
- nema gubitaka energije u prijenosu i distribuciji
- pouzdanost i sigurnost opskrbe
- troškovi održavanja znatno su niži od održavanja centraliziranih proizvodnih objekata
- lokacije za instalaciju fotonaponskih sustava u odnosu na velike centralizirane proizvodne
- sustave, jednostavnije je, lakše i brže pronaći
- jednostavna i brza instalacija te puštanje u pogon

Najvažniji sastavni dio solarne elektrane je dobro dimenzionirani **sunčani (solarni) generator** koji ispunjava zahtjeve klijenata. Kod PV sustava u paralelnom pogonu s električnom mrežom, električna energija proizvedena u sunčanoj elektrani isporučuje se direktno u javnu električnu mrežu. Jednofazno se može priključiti elektrana snage do 5 kW, a elektrane viših snaga se priključuju trofazno. Do 100 kW priključuju se trofazno na niskonaponsku mrežu. Snage više od 100 kW i sve do 500 kW priključuju se trofazno u trafostanici.

Samostalni fotonaponski sustavi

Kao što je već rečeno, solarni fotonaponski (FN) sustavi koji nisu priključeni na mrežu (engl. *offgrid*) često se nazivaju i samostalnim sustavima (engl. *stand-alone systems*). Otočne sunčane elektrane su elektrane koje nisu povezane sa elektroenergetskim sustavom već rade potpuno samostalno, te proizvedenu energiju akumuliraju i/ili predaju potrošačima za koje osiguravaju energiju. Zbog raznolikosti potrošača i same sunčane elektrane se razlikuju, u jednu ruku po veličini što je povezano sa snagom potrošača, a u drugu ruku razlikuju se po zahtjevima potrošača kao na primjer autonomija, sigurnost sustava, vijek trajanja pojedinih komponenata sustava. Pristup projektiranju otočne elektrane povezan je sa zahtjevima korisnika elektrane što uvelike utječe na izbor komponenata i cijenu elektrane. Drugim riječima iste zahtjeve neće imati vlasnik kuće kao korisnik elektrane i odašiljač za vojne potrebe. Zbog navedenih činjenica pristupi projektiranju otočnih elektrana se razlikuju do te mjere da za svaku navedenu primjenu možemo upotrijebiti drugačiji pristup projektiranju. Postoje gotovi programi koji proračunavaju otočne elektrane i bazirani su isključivo na lokaciju elektrane i potrebnoj snazi potrošača, odnosno na potrebnoj energiji koju elektrana mora osigurati.

Takav pristup ne daje potpuni uvid u proračun i u zraku ostavlja mnoga pitanja na koje ćemo odgovoriti jednim detaljnijim proračunom, koji osim lokacije i potrebne_energije uzima u obzir dubine pražnjenja akumulatora, vrstu pretvarača i trošila, gubitke sustava, te punjače akumulatora.

Po veličini sustava otočne elektrane dijelimo na:

Male elektrane

- Parkirališni automati
- Prometna signalizacija
- Manje kuće za odmor
- Kućice za kampiranje

Srednje elektrane

- Kuće za stalni boravak
- Odašiljači za telefoniju
- Odašiljači za potrebe policije i vojske
- Isturena poljoprivredna dobra

<u>Velike elektrane</u>

- Vojni istureni objekti
- Tvornice koje se bave sklapanjem i troše manje količine energije

Slika 2. Osnovni dijelovi fotonaponskog otočnog sustava

Samostalni fotonaponski sustav

Solarni fotonaponski sustavi mogu biti izvedeni i kao hibridni sustavi s vjetroagregatom, kogeneracijom, gorivnim člancima ili, najčešće, generatorom na dizel ili biodizel gorivo.

Samostalni fotonaponski sustav za trošila na izmjeničnu struju

Na slici je prikazana shema samostalnog hibridnog fotonaponskog sustava s generatorom za napajanje trošila na istosmjernu (DC) ili izmjeničnu struju (AC). Kod takvih sustava se električnom energijom proizvedenom solarnim modulima ili vjetroagregatom, prvotno napajaju

trošila, a višak energije se pohranjuje u tzv. solarne akumulatore. U slučaju da ne postoje uvjeti za proizvodnju električne energije solarnim modulima ili vjetroagregatom, izvor za napajanje istosmjernih ili izmjeničnih trošila bit će akumulator. U slučaju da ni akumulator više nema energije za napajanje trošila, uključuje se generator na dizel ili biodizel gorivo.

Kada prikazujemo usporedbu troškova izgradnje otočnog sustava od 5 kW u odnosu na sustav koji možemo spojiti na električnu mrežu te postavljanje kabela ili nadzemnih vodova do odabrane lokacije. Prema današnjim cijenama i tarifama, u koje valja uključiti i sve nevolje s papirologijom, regionalnim i lokalnim planovima, polaganje kabela od najbližeg javnog priključka nije isplativo ako je udaljenost veća od 600 m. Postavljanje zračnog voda na stupovima, neisplativo je čim udaljenost premaši 900 metara.

PRIMJER IZRADE IDEJNOG	PROJEKTA FOTONAPONSKOG SUSTAVA
IME:	FOTONAPONSKI SUSTAV
INVENSTITOR:	
GRAĐEVINA:	Poslovna zgrada - ravni krov
LOKACIJA:	
VRSTA PROJEKTA:	IDEJNI PROJEKT za nadogradnju solarnog fotonaponskog sustava na poslovnu zgradu instalirane snage
PROJEKTANT:	

1. PODACI O OBJEKTU

Na lokaciji nove poslovne zgrade za lokaciju: 45°50'2" North, 15°58'42" East, predviđa se izgradnja Solarne elektrane (SE) na ravnom krovu površine cca. 1500 m² . Na osnovu površine definirati će se instalirana snaga SE.

Na lokaciji buduće elektrane napravljena je snimka. Tu smo snimku obradili programskim alatom Horicatcher i dobili sljedeće podatke o mogućim sjenama na lokaciji elektrane.

Na slici se vidi crvenom bojom putanja sunca, u jutarnjim i poslijepodnevnim satima doći će do sjenčenja SE i umanjene proizvodnje električne energije. U daljnjoj analizi kroz obradu podataka uzeti ćemo te činjenice u obzir.

Slika sjenčanja solarne elektrane

ANALIZA LOKACIJE

Na osnovu ulaznih podataka za lokaciju: 45°50'2" North, 15°58'42" East, Elevation:

Nadmorske visine 162Location: 45\$50'1"North, 15\$58'42"East, Elevation:Solarradiationdatabaseused:PVGIS-classic

Podatci koje nam program izbaci nakon analize lokacije

Nominal the PV system: 50.3 (crystalline power of kW silicon) Estimated losses due to temperature: 8.8% (using local ambient temperature) 2.8% Estimated due loss to angular reflectance effects: Other losses (cables, inverter etc.): 14.0% Combined PV system losses: 23.8%

Fixed syste (O	em: inclination ptimum at gi	on=33�, iven orier	orientati ntation)	on=0�
Month	Ed	Em	H _d	H _m
Jan	73.30	2270	1.79	55.4
Feb	109.00	3050	2.66	74.6
Mar	137.00	4240	3.47	107
Apr	168.00	5040	4.36	131
Мау	189.00	5860	5.06	157
Jun	191.00	5720	5.17	155
Jul	208.00	6450	5.65	175
Aug	192.00	5960	5.23	162
Sep	169.00	5080	4.46	134
Oct	118.00	3650	3.02	93.5
Nov	69.30	2080	1.69	50.8
Dec	50.20	1560	1.20	37.3
Yearly average	140	4250	3.65	111
Total for year		<u>51000</u>		1330

PODACI O KROVU

Podaci o krovu - RAVNI KROV							1	.500	m²		
<i>oblik i parametri krova</i> azimut krova						a	176,4	4°			
ravni krov	t= 10 m	l = 50	m	I _p = 48	m	b _p =	= 28	m	b =	30	m
konstrukcija krova	🗆 drvena		<u> </u>	etonska	·		🗆 me	talna			
razmak potpornja	m		Тор	Toplinska izolacija			DA <u>NE</u>				
statički proračun	<u>□ da</u>		🗆 ne	2			🗆 nije	e poti	rebai	ſ	
polaganje vodova	🗆 kroz odzra	ke	□ <u>kro</u>	po kana vu	lici	na	🗆 ispo	od kr	ova		
	🗆 probijanje	m krova	🗆 pr	obijanjem	zida		🗆 ро	tlu			
zasjenjenje	<u>□ da</u>		🗆 ne	5			🗆 ma	lo, po	ovrei	menc)
sjena od	🗆 dimnjaka		🗆 ar	itene			🗆 kro	vnog	pro	zora	
(skica, fotografija)	🗆 gromobrai	าล		Izračnika			🗆 br	da (z	zgra	<u>da)</u>	

DIMENZIONIRANJE FN SUSTAVA

r

Odabir i veličina najprikladnije površine					
odabrana površina krova	28x48=1344 m ²				
ravan krov	0 °				

Raspored fotonaponskih modula na krov na krovu

3 D modeliran sustav

Za postavljanje elektrane od 50,320 kW_p potrebna 272 FN modula nazivne snage 185 W_p. Predviđeni prostor raspodijeliti na 16 redova po 17 FN modula.

IZBOR FN MODULA

Crystalline module with MONO cells

SCHOTT MONO[®] 180/185/190

At a glance

- Monocrystalline high efficiency cells >17.6 %
- High annual energy yield
- Positive power tolerance
- Elegant design
- Thorough SCHOTT quality control with German engineering

Technical Data

Data at standard test conditions (STC)

Module type		SCHOTT MONO [®] 180	SCHOTT MONO [®] 185	SCHOTT MONO [®] 190		
Nominal power [Wp]	Pmpp	≥ 180	≥ 185	≥ 190		
Voltage at nominal power [V]	Umpp	36.2	36.3	36.4		
Current at nominal power [A]	Impp	4.97	5.10	5.22		
Open-circuit voltage [V]	Uoc	44.8	45.0	45.2		
Short-circuit current [A]	Isc	5.40	5.43	5.46		
Module efficiency (%)	η	13.7	14.1	14.5		
STC (1000W/m²; AM 1.5; cell temperature 25°C) Power tolerance (as measured by flasher): -0 W / +4.99 W						
Data at normal operating	cell te	mperature (NOCT)				

Manufactor and the Advantage of the Adva	D	100	124	107	
Nominal power [vvp]	Pmpp	130	134	137	
Voltage at nominal power [V]	Umpp	32.9	32.8	32.9	
Open-circuit voltage [V]	Uoc	39.3	40.2	41.0	
Short-circuit current [A]	Isc	4.30	4.32	4.35	
Temperature [°C]	TNOCT	46.0	46.0	46.0	
NOCT (800 W/m², AM 1.5, windspeed 1 m/s, ambient temperature 20°C)					

Data at low irradiation

At a low irradiation intensity of 200 W/m² (AM 1.5 and cell temperature 25°C) 96 % of the STC module efficiency (1000 W/m²) will be achieved.

asic Data	U/I Char STC U/I	Char Part Load C)ther Data		
	of chart are of				 Load
	Manufacture	r Schott Solar			Save As
	Тур		4 MONO 185		Save
		Lower Outpu	ut Tolerance [%]	0,0	Print
		Upper Outpu	ut Tolerance [%]	3,0	
	Cell Typ	^e Si Monocrystalline	,	-	
		🔲 Only Suitable f	or Transformer I	nverters	
	Number of Cell	s 72 N	umber of Bypass Diodes	3	
		Cell Strings Per Short Side	pendicular to	 Cell Strings Parallel to Short Side 	
		1 and	2		Close
imensions	Width [mm] 810	Depth [mm]	I 50	
	Height [mm] [1.620 Fr	ame Width [mm]	14	

IZBOR IZMJENJIVAČA DC/AC

SUNNY TRIPOWER 8000TL / 10000TL / 12000TL / 15000TL / 17000TL

Inverter Characteristics			
Manufacturer	SMA Solar Technology AG		Load
Туре	Sunny Tripower 17000TL		Save As
DC Power Rating [kW]	17,41 Max. DC Power [kW] 17,41		Save
AC Power Rating [kW]	17,00 Max. AC Power [kW] 17,00		Print
Stand-By Consumption [W]	12,50 Feed-in from [W] 84,00		
Night Consumption [W]	1,00		
Max. Input Voltage [V]	1000,00 Max. Input Current [A] 33,00		
Grid Connection	3- phase Vumber of DC Inlets		
No. of MPP Trackers	1		
Max, Power Input per MPP Tracker[kW]	17,41 Max. Input Current per MPP Tracker [33,00		
Voltage Limits for MPP Range [V]			
Lower Threshold	150,00 Upper Threshold 800,0	2	
MPP Matching Efficiency [%]			
Output Range < 20% of Power Rating	95,00 Output Range > 20% of Power 100,0 Rating	2	
Change inverter	efficiency when input voltage deviates from rated voltage $0,50$ [%/100V];		
	Nom. DC Voltage [V] 600,0)	
	With Transformer Rated Voltage Characteristic Curve Without Transformer Efficiency		Close

Karakteristika izmjenjivača

Potrebna 3 izmjenjivača !

PROGRAMSKA SIMULACIJA FOTONAPONSKOG SUSTAVA – PROGRAM PV*SOL

🔁 IMI 15	500 m 50kw.pdf - Adobe	Reader	. 7 .
File Edit	View Document Tools Wi	ndow Help	×
•	133% - 🔚 🔛	Find	🖶 🔊
Ē			
			-
Ø		Location: ZAGREB	
		Climate Data Record: ZAGREB	
?		PV Output: 49,95 kWp	
		Gross/Active PV Surface Area: 354,29 / 354,50 m ²	
			-
		PV Array Irradiation: 466.167 kWh	
		Energy Produced by PV Array (AC): 53.623 kWh	
		Grid Feed-in: 53.623 kWh	_
		System Efficiency: 11.5 %	I
		Performance Ratio: 81,6 %	
		Inverter Efficiency: 96,4 %	
		PV Array Efficiency: 11,9 %	
		Specific Annual Yield: 1.073 kWh/kWp	
		CO2 Emissions Avoided: 47.474 kg/a	
			-
		The results are determined by a mathematical model calculation. The actual yields of the photovoltaic system can deviate from these values due to fluctuations in the weather, the efficiency of modules and inverters, and other factors. The System Diagram above does not represent and cannot replace a full technical drawing of the solar system	
se			
🐉 sta	art 🕼 4 Microsof	🔹 🗁 Fotonapon 🖉 Google Prev 🍟 nosiva konst 🔞 2 Microsoft 🔹 🥹 2 Firefox 🔹 📙 2 Adabe R 🔹 🚫 Intel(R) PRO 🖬 PV*SOL Exp	. 🔇 🖸 🔗 1:00

PROVJERA PODATAKA

Output Check		Currents Check	
PV Output per Inverter:	16,7 kW	Current through Cabling under STC:	25 A
Inverter AC Power Rating:	17,0 kW	Max. Capacity of Insulated Copper Wiring, Group C:	225 A
Sizing Factor: (PV Output (STC)	98 %	Rel. Cabling Losses under STC:	0,068 %
AC Power Rating)		max. Current through Inverter at 25 °C and 1000 W/m2	25,5 A
Permissible Sizing Factor:	79 % - 109 %	Max. Inverter Input Current:	33,0 A
MPP Voltage Check		Upper Voltage Threshold Check	
Inverter MPP Tracking Range:	150 - 800 V	Inverter Max. System Voltage:	1000 V
PV Array MPP Voltage at 70 °C + 1000 W/m2 or 15 °C + 1000 W/m ² :	536 - 680 V	Module Max. System Voltage:	1000 V
		PV Array Open Circuit Voltage at -10 °C and 1000 W/m2	904 V
Unbalanced Load Check			
	0,0 kVA	Maximum Permissible Unbalanced	4,6 kVA
Current Unbalanced Load:		LUGU,	
Current Unbalanced Load: Please observe a	No discrep ny design recomm	vancies found! rendations made by the manufacturer.	
Current Unbalanced Load: Please observe a Total System	No discrep ny design recomm	rancies found! rendations made by the manufacturer.	

💅 Annual Energy Balance			
Array Gross Surface:	354,29 m²	Array Output:	49,95 kW
Array Solar Surface:	354,50 m²		
PV Array Irradiation		437.752,3 kWh	
Epergy Produced by PV Array (AC)		50.358.6 kWb	
Grid. Feed-in		50.358.6 kWh	
Energy from Grid		41,6 kWh	
System Efficiency		11,5 %	
Performance Ratio		81,6 %	
Specific Annual Yield		1.007,3 kWh/kWp	
PV Array Efficiency		12,0 %	
Inverter Efficiency		96,2 %	
			4 ▷
	Close	•	

Dobivena el. energija iz fotonaponskog sustava na bazi 50,3 kW_p instalirane nazivne snage je: 50.358,6 kWh to je 50,3MWh.

PVSOL program za projektiranje FN sustava

PV*SOL[®] Expert: 3D Vizualizacija

3D – Vizualizacija montaža i konfiguracije

Fotonaponskih elektrana

Kako koristiti program PVSOL za projektiranje fotonaponske elektrane

Pokrenemo program na ikonici

Početna stranica

Novi projekt

- 1. Idi u alatnoj traci na *File > New project*.
- 2. Označiti opciju System Planning with

3D Visuaization.

New Project		
System Selection		
Grid Connected System		
-Grid Concept		
Full Feed-in		
🗇 Net Metering		
📻 🕐 System Planning without 3D Visualisa	ition	
🔇 👻 🖲 System Planning with 3D Visualisation	i	
Stand Alone System		
Start New Project with Quick Design		
		10 C 22805

3. Potvrditi sa OK.

Ili otvoriti postojeći projekt sa 3D Vizualizacijom.

 Otvoriti 3D sustav sa gumbom u alatnoj traci System > 3D Vizualization

 \rightarrow Kreiraj novi PV sustav iz ovog projekta:

5. Idi u meni <u>Project administrator</u>i odaberi temu u meniju *"New 3D system*" Otvori se novi prozor:

New 30	System		? - ⊐ ×	
en Reference	Coverable Object			
akoston 1	(Kerlangular)	oot/rei	· · · ·	
V*SOL: Current Project	🦘 Simple Roof A	ez +		
ct Reference: Solar System Design	Complex Build	ing 🔸	With Pitched P	loof
gject Number: Vaciant: System Vaciant	Mail 🔰		With Tented R	oot
	1.6-		🧆 With Hipped R	bal
3D System	n Start Paranotoro		🦔 With Gabled B	001
		518	n 👘 With Mansard	Roc
			High-Ree Buil	ding

Sada se može definirati novi projekt:

- 6. Odredi se ime sustava u polju *"3D System reference*".
- 7. Početi sa odabirom krova objekta na koji želimo staviti PV sustav. Molimo odabrati model krova koji je najbliži objektu koji će biti simuliran. Ima različitih oblika objekata na izbor, koji se mogu jednostavno skalirati, pozicionirati i orijentirati kasnije.
 - Building (simple) (rectangular, trapezoidal)
 - Building (complex) (with pitched roof, tented roof, hipped roof, gabled roof, mansard roof or high-rise building)
 - Wall

Odabrani objekt sada je vidljiv u Drop-Down meniju "PV System Object".

8. Klikom na "Start" gumb. Terrain wiew vašeg novog 3D projekta uključujući i predselektirani objekt je vidljiv.

Kreiranje 3D objekta

Kompletan proces podijeljen je u korake tako što čini rad puno lakšim.

Svi 3D objekti koji uzrokuju sjenčanje, kao što su zgrade, drveće, neaktivni prozori i zabranjena područja, vuku se na radnu površinu uz pomoć miša. Radna površina prikazuje kružni isječak hemisfere veličine 300 x 300 metara. Mjerna mreža (slobodno podesiva), koja je označena na terenu i hemisferi, koristi se za orijentaciju pri postavljanju 3D objekata. Položaj 3D objekata je naveden u odnosu na ishodište. Krovni objekti su prilagođeni u odnosu na svoju referentnu površinu.

Moguće je preurediti svaki već postavljeni 3D objekt jednostavnim klikom miša.

Pokrovni objekti

3D vizualizacija počinje s postavkama pokrova objekta. Na primjer, oblik krova može se odabrati iz zbirke uobičajenih vrsta zgrada. Zgrada je smještena u 3D sceni tada može biti skalirana na temelju dimenzije originala. Moguće je prikazati pojedine dijelove krova sa milimetarskom preciznošću unosom krovne projekcije i zabranjenih područja.

Izravno zabranjeni i objekti koji zasjenjuju na pokrovu objekta

Nakon dimenzioniranja radovi na zgradi su završeni. U sljedećem radnom koraku zabranjeni objekti poput prozora i zabranjena područja mogu biti instalirani na pokrov objekta, kao i predmeti koji uzrokuju sjenčanje, poput dimnjaka i oluka. Pan shot omogućuje kut gledanja u 3D sceni te stalno može biti usmjeren na željeni dio krova. To omogućuje da pasivne i aktivne 3D elementi budu interaktivno postavljeni i prilagođeni na svim površinama označenim kao PV područja. Kao operativnih potpora, automatsko obilježavanje i dimenzioniranje dostupni su korisniku u PV modu. Zabranjeni okviri također mogu biti definirani u bazi područja svakog objekta.

Sjenčanje okolnog područja

Uz pomoć programa, korisnik može u bilo koje vrijeme pozicionirati i podesiti okolne objekte koji uzrokuju sjenčanje, kao što su druge zgrade, drveće i jednostavne objekte (zidovi, stupovi, itd.).

U slučaju stabala, napravljena je razlika između konstantno providnih (crnogorice) i sezonski promjenjivih (bjelogorična) drveća, dok se drugi predmeti ocjenjuju kao neprozirni.

predstavlja smetnje.

Prikazuju virtualne pozicije sunca kroz azimut i elevaciju, pomoću kutova ili pomoću vremena slijede put sunca u slobodno odabranim vremenskim razdobljima. Osim vizualnog predstavljanja, to također služi donošenju odluka, npr. koliko objekt uzrokuje sjenčanje te

Horizont

Program omogućuje postavljanje horizonta. Kada korisnik definira planinske lance i druge značajke na dalekom horizontu samo da predstavljaju ponašanje sunca kod izlaska i zalaska. Horizont ima iste funkcije kao u bivšim PV*Sol verzijama (tj. putem sučelja za "horizontu"). Tome se pristupa interaktivno klikom miša u poznatom *shading-dialog* iz PV*SOL.

Međutim nije moguće integrirati objekte koji sjenčaju horizont. To je eliminirano kao važan izvor pogreška u smislu perspektive.

Planiranje sustava

Planiranje sustava odvija se u 3 faze: analiza sjenčanja, pokrivenost modulima i ožičenje modula. Zatim se završi 3D dizajn i uvezu podatci u PV * SOL. Simulacija se izvodi tamo.

Analiza sjenčanja

Nakon što su svi objekti koji uzrokuju sjenčanje postavljeni i naknadno skalirani, može se izvršiti analiza sjenčanja temelju sezonskog sjenčanja na na područjima pokrivenih objekata. Preko točke distribucije u posebnoj mreži, postotak sjenčanja izračunava se kao godišnji prosjek. Na taj način, frekvencijski postotak mrežne točke određuje se u dnevnim koracima i grafički prikazuje procjene korisniku.

Pokrivenost modulima

Postavite sustav pomoću krovno-integriranih pojedinačnih modula ili formacija modula.

Definiranje formacije modula

Formiranja modula opisuje grupu modula istog tipa, koji može biti uređen samo u

postojećoj mreži. Mreža se za svaku formaciju modula može pojedinačno navesti i sastoji se od kombinacije dimenzija modula i unutarnjih udaljenosti između modula (kasnije se mogu mijenjati od strane korisnika u bilo koje vrijeme).

Moduli montirani na krov

Najviše energije se generira sa specifičnim nagibima. PV moduli smješteni su na otvorenim prostorima ili ravnim krovovima. Nadalje, montirani sustavi zahtijevaju rjeđe čišćenje (1).

Ožičenje modula

Unaprijed određena frekvencijska raspodjela sjenčanja igra važnu ulogu u cijelom procesu modula ožičenje. Kao što je već spomenuto, ova funkcija može se prikazati i biti skrivena u svakom trenutku. Distribucija frekvencija sjenčanja može se koristiti i kako bi se utvrdio raspored modula u nizovima prilikom odlučivanja o optimalnom ožičenju modula, jer sjenčanje može bitno utjecati na karakterističnu krivulju generatora!

Ožičenje uključuje odabir grupe modula koju korisnik želi dodijeliti sustavu pretvarača. Ona mora doći iz jednog modula ili više formacija modula istog tipa i istog PV područja. Sve prikladne opcije ožičenja za odabrane module automatski se određuje za do tri tipa pretvarača, od kojih korisnik može odabrati jedan.

Moduli su zatim podijeljeni u redove na temelju ovoga ožičenja. Raspodjela se postiže geometrijskim rasporedom modula, horizontalno ili vertikalno. Nakon što su svi moduli potpuno ožičeni, korisnik može iskoristiti frekvencije distribucije i razmjene modula unutar pojedinih ožičenja, ali ne može dodati nove module ili uklanjati postojeće module. Međutim, ovisno o izgledu, moguća je razmjena pojedinih modula sve dok se slični moduli koji su sjenčani nalaze u jednom nizu.

<u>Alatna traka</u>

Administracija projekta

Neposredno nakon pristupanja 3D vizualizaciji iz PV*SOL glavnog izbornika dolazite u glavni prozor. Učinite to klikom na simbol *Project Administration* u gornjem lijevom kutu. Izbornik je otvoren.

- \rightarrow odaberite jednu od ponuđenih opcija za sljedeći korak:
 - U većini slučajeva započet ćete s novim projektom. To ćete učiniti selektirajući "New 3D System". To stati vas vodi na masku <u>New System</u> u kojem ćete odrediti početne parametre 3D sustava i početi 3D planiranje.
 - Save System: ako želite sačuvati postojeći 3D plan ili rezultate.
 - Import Horizon: Ako želite unijeti horizont iz postojeće datoteke (pogledati isto: <u>Solar Altitude and Shadows</u> <u>Courses</u>).

	s 🤨 📜 🗮 🖉	•
	New 3D System	
1	Save Project	
N.	Save Project as	
C	Import Horizon	
PV	AdoptData	

• Adopt Data : ako želite napustiti 3D vizualizaciju i vratiti se u PV*SOL Glavni izbornik.

Meni 3D vizualizacije

JD Vi	sualizat	ion									
2	\$	0			<i>p</i> .	1	?	ed Ti	errain	•)	
-	Terrai	n View	v	Object	t View	N	lo dule C	overage	Modu	le Mounting	Module Configuration

Cilj je odrediti konfiguraciju pretvarača i grafički ih ožičati za izbor modula.

Traka s alatima, gumb *Project Administration* i glavni izbornik s četiri različita područja rada omogućuju jednostavnu navigaciju i rad u programu.

→ Kompletan operativni proces podijeljen je u radne korake. Trebali biste slijediti ove korake rada po redoslijedu:

Terrain View: U ovom koraku, možete postaviti i prilagoditi okolne objekte koji uzrokuju sjenčanje, kao što su druge zgrade, drveće i jednostavni objekti (zidovi, dimnjaci, uvala).

Object View: U ovom području pokrov objekta je prikazan sa svojim suprastrukturama, ograničenim područjima, i drugim predmetima koji uzrokuju sjene.

Module Coverage: Planiranje sustava počinje ovdje s izborom pokrivenosti površine zgrade s modulima.

Module mounting: montirani sustavi se planiraju koristeći brojne funkcije u *Module mounting* odjeljku

Module Configuration: ovo je zadnji korak za kompletiranje plana sustava

Za jednostavno upoznavanje sa korisničkim sučeljem preporučujemo Video turtorials.

Alatna traka

Alatna traka za procesiranje različitih zadataka uvijek je dostupna u 3D Vizualizaciji.

Klikom na odgovarajući simbol pristupate relevantnim dijalozima za uređivanje ili padajućim izbornicima.

• Irradiation generator

U ovom dijelu programa može se mijenjati položaj sunca te izvoditi animacija.

Object administration

Ova opcija vam daje pregled svih već postavljenih 3D objekata u obliku liste.

<u>Standard view</u>

Klikom na ovaj gumb vraćate u standardni pogled (South (Južni), i standardnu veličinu).

Display options

Ovdje su ponuđene opcije prikaza, koje se prikazuju na ekranu programa.

Screenshot menager

U ovom dijelu programa mogu se raditi snimke zaslona projekta za izvješća.

• <u>Help</u> ?

Ovdje se pokreće online pomoć.

<u>Selection of the coverable object</u>

Ovdje se biraju objekti koji su pogodni za pokrivanje sa PV modulima.

Visina sunca i putanje sijena

Možete mijenjati položaj sunca i tako provoditi animacije pomoću generatora ozračivanja. Ovdje je cilj da se u 3D načinu rada vizualiziraju stvarni putovi sjena tijekom dana i godine te na taj način istraži što se događa u određenom danu i vremenu na određenom modulu koji je sjenčan od nekog objekta. To je potpora donošenju odluka - na primjer, za određivanje u kojoj mjeri neki objekt uzrokuje sjenčanje . PV sustav može biti optimiziran u pogledu sjenčanja.

		Solar Altitude	? - 🗆
S	Solar Altitude - Angl Sclar Azimuth:	e: Solar Elevation Angle:	
S	iolar Altitude - Time	: True Colar Time	
	21/06/10 -	13:00 🍵	Animation

→ Postupiti kako slijedi:

- 1. Pokrenite dijalog generatora ozračivanja klikom na 🤐 u alatnoj traci
- Postoje dvije metode za određivanje pozicije sunca: Može se postaviti smjer sijanja sunca ili
 - Direktno zadati azimut (0-360°) i kut visine (0-90°) ili
 - Unosom datuma i vremena.

Za svaki dan može se zadati vrijeme između izlaska i zalaska sunca. Vremenski interval animacije je 10 minuta.

- 3. Kliknite na "Animation" gumb za ulazak u animaciju putanje sunca.
- 4. Izađite iz dijaloga koristeći *"Close*" gumb.

Animacija putanje Sunca

S vizualizacijom u 3D načinu rada možete prikazati put sunca i sjenčanja zviježđa. Sjenčanje je vidljivo preko modula u vremenskom toku. Možete pratiti učinke sjenčanja na sustav i izbrisati module po potrebi.

 \rightarrow Preduvjeti:

- 1. Prethodno ste postavili poziciju sunca u trenutnom projektu unutar dijaloga *"Solar Altitud*e" i
- 2. Kliknuli na *"animation*" gumb.
- 3. Urediti 3D sliku prije početka kako bi imali nesmetan pogled važnih područja svog 3D projekta.

Animation	of Sun's Course	? - 🗆 :
Start Date:	End Date:	
Continuous Loop	Speed:	
Current Date:	True Solar Time:	
	S	top Start
Animat	ion of Sun's Course	
		Close

 \rightarrow Postupiti kako slijedi:

- Prvo se zada početni datum te završni datum animacije
 Datumi moraju biti u razumnom poretku i ne mogu prijeći jedan preko drugog. To stvara broj dana tijekom kojih se animacija treba odraditi.
- 2. Zada se da animacija kruži s označavanjem "Continuous Loop"
- Podesiti brzinu animacije pomoću *slide* pokazivača.
 Vrijeme animacije je 10 minuta.
- 4. Pokrenite animaciju klikom na *"Start*" gumb.

Kao rezultat Sjene koje uzrokuju objekti su animirani. Tijekom animacije datum i vrijeme će biti prikazani ispod *"Current Date*" i *"True Solar Time*".

5. Gumb se naknadno mijenja u *"Stop*" te s još jednim klikom zaustavljate animaciju.

Administracija objekata

Administracija objekta daje pregled 3D objekata već navedenih u projektu i pokazuje to svrstavanjem u određene kategorije. Koristeći ovaj dijalog nećete morati dugo tražiti da pronađete objekte koje su već postavljeni. Ovaj dijalog može se koristiti ako želite dobiti pregled o napretku svog projekta.

Možete pristupiti ovom dijalogu klikom na 🛄 u alatnoj traci.

3D objekti ovdje su posloženi kao u svakom *"tree*" direktoriju.

Možete raditi sa željenim objektom jednostavnim klikom na njega. Klikom na jedan objekt 3D kamera se usmjeruje na taj objekt te ga tada možete početi preuređivati.

Desnim klikom na objekt otvarate drugi meni (*"Copy", "Remove*", itd) prikladan za tip tog objekta.

Promjene na objektu možete napraviti i koristeći administraciju objekta.

Activate <u>Remove from coverable objects</u> <u>Set point of origin here</u> <u>Rename</u> <u>Edit</u> <u>Copy</u> <u>Remove</u>

Koristeći gumb u gornjem lijevom uglu za 🎫 i suziti 📻 sve direktorije.

proširiti

Standardni pogled i opcije pogleda

Standardni pogled

Ako se želite vratiti u definirano početno stanje u 3D svijetu , kliknite na ikonu "Standard View"

🔝 u alatnoj traci.

Kamera će se vratiti u standardnu poziciju i orijentaciju. Pozicija kamere ovisi o trenutno odabranom pogledu.

Ako ste u *"Roof Coverage*", na primjer, ova procedura će vas vratiti u standardni pogled krova, dok je pogled prema jugu standardno namješten u pogledu terena.

Opcije ekrana

Koristite malu crnu strelicu desno na ikoni *"Tool"* da otvorite *pull-down* padajući izbornik sa sljedećim temama:

Show Restricted Areas

Show Coordinate Grid

Show Text

Select Texture (grass, sand, stone). Textures are saved with the project. New projects use the selected texture.

Screenshot Menager

U njemu možete kreirati, pridodati kategorije i uređivati preslike ekrana trenutnog pogleda za prezentacije u izvješću projekta.

Slika s cijelim 3D prikazom područja od 3D vizualizacije je stvorena. Pokazivač miša i prikaz elemenata koji su sastavni dio 3D scene nisu uzeti u obzir ovdje. Pogled koji je bio vidljiv prije nego je otvoren dijalog reproduciran je na slici.

kliknite na

- \rightarrow Postupiti kako slijedi:
- 1. U alatnoj traci

gumb kamere 💴

Slika ekrana bit će prikazana.

- 2. Odaberite kategoriju izvješća klikom na jedan od:
 - Shade enviroment
 - Module coverage
 - Module configuration
 - Shade frequency distribution

Slika se i kasnije može pridodati nekoj od kategorija (vidjeti ispod).

- 3. Kliknite na *"Shutter Release*" gumb za slikanje fotografije trenutnog pogleda iza dijaloga. Slika će biti spremljena kao *Bitmap image* u ovoj kategoriji te prikazana kao smanjena slika.
- 4. Desnim klikom na fotografiju prikazat će se novi padajući izbornik koji nudi sljedeće opcije:
 - Allocate category: pomiče sliku u drugu kategoriju. Bit će prikazan sljedeći padajući izbornik koji sadrži tri druge kategorije (pogledati iznad).

?

Gebäude 02

- *Add image text*: To je ime slike i može se kasnije koristiti u izvješću.
- *Remove*: Briše sliku.
- Remove All: Briše sve slike.

Ako kliknete s mišem na element slike, U preslici ekrana programski pogled vratit će se kao vidljiv. To znači da je moguće osvježiti sliku ako je potrebno.

5. Za spremiti sliku kliknite *"Save All*" gumb. Slike u svim kategorijama spremit će se u mapu po vašem izboru.

Slike su spremljene s projektom tako da se mogu opet koristiti kada se ponovno pokrene projekt.

ZADACI ZA UČENIKE I NASTAVNIKE

Zadatak 1.

Temeljem prikazanog idejnog projekta pronađite u Vašem gradu zgradu s ravnim krovom u programu ARKOD ili izvod iz katastra kako smo prikazali u primjeru, te napravite analizu koliku elektranu maksimalne snage možete postaviti na taj krov. Pripazite na razmak između modula zbog sjenčanja. Kada napravite analizu i izaberete potrebne dijelove, izračunajte koliko Vam vremena treba kako bi isplatili elektranu ako prodajete električnu energiju HEP-u prema cijeni 1 KWh za 0,77 kn. Vaš zadatak je gotov kada napravite idejni projekt elektrane za izabranu lokaciju.

Za izabrani krov potrebno je napraviti 3D – vizualizaciju fotonaponske elektrane s montažom.

Zadatak 2.

Za jedan krov skladišta tvrtke Petrokov, slika 1. u naselju Sveta Klara, Mrkšina 52d, 10020 Zagreb, pod kutom 21° treba dimenzionirati fotonaponski sustav za dobivanje električne energije. Na slici su dane mjere izmjerene na krovovima skladišta tvrtke Petrokov, a koje su bitne za provedbu proračuna i dobivanja moguće površine za postavljanje modula tj. snage fotonaponskog sustava koja bi se mogla instalirati na zadanom krovu. Dužina skladišta je 60 m.

- 1. Nađite na Internetu koordinate lokaciju Petrokov Sveta Klara.
- 2. U programski paket PVSOL unesite lokaciju Svete Klare.

3. Izaberite FN module i prema površini krova i površini modula odredite maksimalni broj modula.

4. Odredite nazivnu snagu sunčane elektrane umnoškom broja modula i snage po jednom modulu.

- 5. PVSOL 3D izaberite oblik građevine.
- 6. Ubacite FN module na kosi krov.
- 7. Izaberite izmjenjivač.
- 8. Programskom simulacijom u programu PV*SOL provjerite Vaš projekt.

PROJEKTIRANJE I MONTAŽA FOTONAPONSKOG SUSTAVA

1. Podaci o objektu

Skica površine za postavljanje elektrane sa željenim položajem, mogućim zasjenjenjima i dimenzijama.

Vrsta na krovu u krovu na fasadi u fasadi na tlu Slobodna površina za postavljanje elektrane Zeljena instalirana snaga elektrane KWh Željena dobivena godišnja energija kWh Maksimalna investicija za elektranu ekspertize Podaci o dobivenoj energiji na simulacije proračuna	Vrsta modula	🗆 polikristalni	🗆 mono	okristalni 🛛 🗆 a	amorfni 🛛	providni
Slobodna površina za postavljanje elektrane Željena instalirana snaga elektrane Željena dobivena godišnja energija kWh Maksimalna investicija za elektranu Podaci o dobivenoj energiji na simulacije proračuna ekspertize temelju	Vrsta montaže	🗆 na krovu	🗆 u krovu	🗆 na fasadi	🗆 u fasadi	🗆 na tlu
Željena instalirana snaga elektrane Željena dobivena godišnja energija Maksimalna investicija za elektranu Podaci o dobivenoj energiji na temelju Simulacije investicia Podaci o dobivenoj energiji na temelju	Slobodna p	ovršina za posta	vljanje elekti	rane		
Željena dobivena godišnja energija kWh Maksimalna investicija za elektranu Podaci o dobivenoj energiji na simulacije proračuna ekspertize temelju	Željena ins	talirana snaga e	lektrane			k
Maksimalna investicija za elektranu Podaci o dobivenoj energiji na simulacije proračuna ekspertize temelju	Željena dol	pivena godišnja	energija			kWh/
Podaci o dobivenoj energiji na 🗆 simulacije 🗆 proračuna 🔅 ekspertize temelju	Maksimalna	a investicija za e	lektranu			
	Podaci o temelju	dobivenoj ener	giji na 🗆	simulacije] proračuna	ekspertize

2. Podaci o krovu ili tlu

Položajna skica

									1		1
Podaci o krovu/tlu											m²
oblik i p	arame	tri krov	'a			azimu	t krov	a, י	Y	0	
krov na dvije vode	h = m	t m	=	l m	=	b =	r	n	a =	m	
kosi krov	h = m	t m	=	l m	=	b =	r	n	a =	m	
ravni krov	t = m	l m	=	l _p m	b _p =		m b =				
pilasti krov	h = m	t m	=	= = b = m			r	n	a =	m	
pokrov	🗆 crije	ер		metalı	ni, tra	pez	🗆 me	etal	ni, valovi	ti	
	🗆 šind	🗆 šindra			en						
konstrukcija krova	🗆 drve	ena		betons	ska		🗆 me	etal	na		
razmak potpornja		n	ו To	plinsk	a izol	acija	DA NE				
statički proračun	🗆 da			🗆 ne				🗆 nije potreban			
polaganje vodova	kroz odzrake			□ po kanalici na krovu				a 🗆 ispod krova			
	probijanjem krova			🗆 probijanjem zida			🗆 po tlu				
zasjenjenje	🗆 da			ne			🗆 ma	alo,	povreme	eno	
sjena od	🗆 dim	njaka		🗆 antene			krovnog prozora				
(skica, fotografija)	_ gromo	obrana		🗆 odzračnika							
podaci o tlu za postav	/ljanje	elektra	ine								m²
polaganje vodova	□ odzra	kro: ke	z 🗆 kr	po kanalici na krovu			🗆 ispod krova				
	probij krova	anjem		probija	anjem	zida	🗆 po tlu				
zasjenjenje	ם ז	DA NE		malo,	povre	meno					
sjena od	🗆 zgra	ada		stabal	а		🗆 pla	nir	na		
(skica, fotografija)	🗆 stup	oova									
dostupnost	🗆 dob	ra		potreb	ona sk	ela	🗆 ро	trel	ona dizali	са	
dovoz do objekta	□ cest	a 🗆	staza	1	🗆 vo	dom		□ r	nema put	а	

3. Podaci o krovu ili tlu

4. Podaci o fotonaponskoj elektrani

Fotonaponski generator			Snaga	kW
azimut krova	0	moguć	i azimut generatora	0
nagib generatora	0	🗆 prać	enje Sunca	
zaštita od groma	🗆 postoji	🗆 ne p	ostoji	🗆 djelomična
uzemljenje generatora	🗆 preko gromobrana		posebno izvedeno	
priključni ormari i brojilo	🗆 u objektu	🗆 ispo	l generatora	
položaj pretvarača	uz generator	🗆 u obj	jektu blizu krova	
položaj iskapčanja AC	🗆 uz pretvarač	🗆 uz bi	rojilo	

Vodovi i instalacije	2							
duljina	udaljenost od generato		m					
energetskih vodova	energetskin vodova udaljenost od priključnog DC ormara do pretvarača							
tip:	udaljenost od	rmara AC	m					
presjek: mm ²	udaljeno	st od priključnog ormara AC o	do brojila	m				
	udaljen	ost od brojila do niskonapons	ke mreže	m				
		spoj generatora na gr	romobran	m				
		spoj generatora na uz	zemljenje	m				
		m						
mjesto i način pos	tavljanja DC vodova							
mjesto i način pos	tavljanja AC vodova							
duljina signalnih	udaljenc	st senzora zračenja do mjest	a prikaza	m				
vodova	uda	udaljenost termometra do mjesta prikaza udaljenost anemometra do mjesta prikaza						
presiek: mm ²	udal							
P				m				
			ukupno	m				
mjesto i način pos	tavljanja signalnih vodova	3						
duljina mrežnih vo	odova, tip:	udaljenost pretvarača do ra	čunala	m				
mjesto i način pos	tavljanja mrežnih vodova							
probijanja za	🗆 kroz krov	□ kroz zid	🗆 kroz stro	р				
vouove	puta, φ = mr	m puta, φ = mm	puta	, φ = mm				

5. Dimenzioniranje FN sustava

Odabir i veličina najprikladnije	površine	Procjena površine i sna	ge generatora
odabrana površina krova	m²	površina generatora	od m²do m²
usmjerenost krova	0	husi na dula	
nagib krova	0	broj modula	od do
usmjerenost FN generatora	0	snaga FN generatora	odkW dokW

Odabir fo	tonap	onskog	modul	a i njegove	karakte	ristike					
proizv	ođač							Тір			
katalošk	i broj					nazivna sn	aga				W
vrsta	ćelije					garan	cija				godina
U _{DC}			۷	U _{MPP}		V			l _k		А
U _{DC(-10°)}			V	U _{MPP(+70°)}		V		I _M	IPP		А
utikači	DA	NE	bro	oj premosnil	n dioda			nosa	či	DA	NE
visina			m	širina		m		površir	าล		m²
masa			kg	cijena			1	€			kn

Koncept sustava							
centralni raspored izmjenjivača	🗆 niski napon						
linijski raspored izmjenjivača	□ napon >120 V						
paralelni raspored izmjenjivača	Master-Slave						

Odabir pretvarača – m	režni sustav						
proizvođač		tip			kat. br.		
Ulaz (istosmjerni na	pon – DC)						
najveća ulazna snaga	W	najveći	broj	paralelnih	nizova pane	ela	
najveći ulazni napon	V	raspon n	apon	a fotonap	ona, MPPT		
najveća ulazna struja	А		br	roj MPPT	regulatora		
Izlaz (izmjenični na	pon – AC)						
nominalna izlazna snaga	я Э	W	na	ajveća izla	zna snaga		W
najveća izlazna struja	A fre	ekvencija	mrež	e/raspon			Hz
nominalni izmjenični na	pon/raspon						V
faktor snage (cos ϕ)		izmjer	iično	spajanje			W
Opći podaci		-			-		
potrošnja u mirovanji	ו (Standby)	W	fre	kvencija (Hz)/valni ob	lik	50/sinus
temperatura okoline	e od	do	°C	duljina	vodiča bate	rija	m
dimenzije l x b x h	1		mm		ma	asa	kg
presjek vodiča	mm ²			cijena	(E	kn

ł ł ł ł ł ì. ł i i ÷ 1 3 : 1 T 1 ł : ÷ 1 1 1 91 υ β 1 V Ν Л d'i Ũ ł b = h =E Cl 00 a =zdenie 0 ā Legenda 0 PX $d_1 =$ 쁞

d =

6. Montažna površina PV-generatora, položaj i orijentacija modula PV-generatora ravni krov

Ι

SMA

Izbor izmjenjivača

SB 1100 / SB 1700

- Integrated ESS DC load disconnecting unit
- > Electric separation

Suitable for outdoors

- For inside and outside installation
- > Extended temperature range

Reliable

- > Worldwide SMA service including Service Line
- Attractice SMA warranty program

SUNNY BOY 1100 / 1700 The compact class

When configuring any solar power installation, the aim is to get the optimum match between the solar generator's output power and the inverter's input power. This includes having the widest possible selection of different inverter types. Our compact inverters, Sunny Boy 1100 and Sunny Boy 1700, have proven particularly successful with more than 30,000 units sold worldwide. Packed full of innovative technologies, these "smaller" Sunny Boys also feature the international SMA grid guard interface. This ensures maximum reliability when operating the solar power system and enables electricity to be fed into public grids anywhere in the world.

Izbor izmjenjivača

Technical data SUNNY BOY 1100 / 1700

	SB 1100	SB 1700
Input (DC)		
Max. DC input power	1210 W	1850 W
Max. DC voltage	400 V	400 V
PV voltage range, MPPT	139 V - 320 V	139 V - 320 V
Max. input current	10 A	12.6 A
Number of MPP trackers	1	1
Max. number of strings (parallel)	2	2
Output (AC)		
Nominal AC output power	1000 W	1550 W
Max. AC output power	1100 W	1700 W
Max. output current	5.6 A	8.6 A
Nominal AC voltage / range	220 V - 240 V / 180 V - 260 V	220 V - 240 V / 180 V - 260 V
AC grid frequency (self-adjusting) / range	50 Hz / 60 Hz / ±4.5 Hz	50 Hz / 60 Hz / ± 4,5 Hz
Power factor (cos φ)	1	1
AC connection	single-phase	single-phase
Efficiency		
Max. efficiency	93.0 %	93.5 %
Euro ETA	91.6%	91.8 %
Protective equipment		
DC reverse polarity protection	•	•
DC load-disconnecting switch ESS	•	•
AC short-circuit tolerance	•	•
Ground fault monitoring	•	•
Grid monitoring (SMA grid guard)	•	•
Galvanically isolated	•	•

www.SMA.de Freecall +800 SUNNYBOY Freecall +800 78669269

SMA Solar Technology AG

Priključni omarić DC

Priključni omarić AC

Montaža izmjenjivača i priključnih omarića

Shema spajanja fotonaponske elektrane

PROJEKTIRANJE I MONTAŽA OTOČNOG SUSTAVA

Za kuću na moru koja ima potrošače prema tablici potrebno je projektirati smostalnu otočnu elektranu *off -grid*.

Primjer projektiranja otočnog sustava

1. Korak: Proračun potrebne energije/danu

	energy consumption calculation - kalkulacija potrošnje energije											
Ва	ttery capacity calculation	n for 24 hours use.	Kalkulacija kap	aciteta baterija za 24 s	atnu upotrebu.							
			power in Watt	Time to use in 24hours	Loadfactor	Ah	Daily use (Wh)					
	AC 230 V oprema:	AC 230 volt instruments	Snaga u W	Trajanje uključenosti u h	Faktor upotrebe	Ah	Dnevna potrošnja (Wh)					
1	Mašina za pranje suđa	Dishwasher	1200	1	0,8	20	960					
1	Napa za odsis para	Cooker hood fan	150	1	1	3	150					
1	Pumpa tople vode	Warm water pump	100	10	1	21	1000					
1	Zamrzivač	Freezer	100	24	1	50	2400					
1	Frižider	Frigerator	100	24	1	50	2400					
1	Aparat za kavu	Caffee machine	300	0,5	1	3	150					
1	Mikrovalna pećnica	Microwave	1000	0,2	1	4	200					
1	Pumpa za vodu 230 V	Water pump 230 volt	1000	0,8	1	17	800					
1	Bazenska pumpa	Swimming pool pump	1000	1,6	1	33	1600					
1	PC računalo	PC/ Home computer	75	1	1	2	75					
1	Radio	Radio / audio	40	1	1	1	40					
1	Usisavač	Vacuum cleaner	1500	1	1	31	1500					
1	Televizija	Television	100	3	1	6	300					
1	Perilica za rublje	Washing machine	2000	1,5	0,8	50	2400					
1	Video	Video / DVD	40	2 1		2	80					
1	Klima jedinice	Aircon unit	4000	3	1	250	12000					
1	Rasvjeta 230 V	lightning in 230 volt	800	3	1	50	2400					
1	Rasvjeta vanjska 230 volt	lightning out 230 volt	800	2	1	33	1600					
1	Ostali potrošači	extra 230 volt users	800	2	1	33	1600					
	Suma					659	31655					
			Current in Amps.	Time to use in 24hours	Power in Wats	Ah	Daily use (Wh)					
	DC Trošila	DC Trošila	Struja (A)	Trajanje uključenosti u h	Snaga u W	Ah	Dnevna potrošnja (Wh)					
1	Ostala potrošnja	Extra users	0,5	24	24	12	576,0					
	Suma					12	576					
	Napon baterije / battery v	/oltage:	Projektirana po	otrošnja u Ah i Wh								
	48	Volt	Calculated con	sumption in Ah and W	h	671	32231					

2. Korak : Izbor osnovnih parametara

.

Osnovni parametri sustava

Napon baterije U _S (V)	48				
Koeficijent dubine pražnjenja akumulatora t _z					
Stupanj korisnog djelovanja punjenja η _{Ah}	0,9				
Trajanje autonomije n _A (d)	1				
Potpuni oporavak sustava n _E (d)	10				
Koeficijent korištenja sustava h _B	1				

3. Korak: Kapacitet baterija, potrebno dnevno punjenje sustava

× Dnevna potrošnja u Ah

Dnevna potrošnja E _D = h _B ·E _V	(Wh/d)	32.000
Dnevna potrošnja Q _D = E _D /U _S	(Ah)	667

× Kapacitet idealnog i realnog akumulatora

Kapacitet idealnog akumulatora $K_N = n_A (E_V)/U_S$ (Ah)	667	
Minimalni kapacitet realnog akumulatora $K = K_N/t_Z$ (Ah)	1.333	

 Potrebno dnevno punjenje baterija uzima u obzir η procesa punjenja i predviđeni samooporavak sustava

Potrebno dnevno punjenje $Q_L = (1/\eta_{Ah}) \cdot (Q_D + K_N/n_E)$ (Ah) 815

× Proizvedenih 815 Ah / dan pokriva projektirani sustav

4. Korak: Određivanje broja fotonaponskih modula

× Potrebno je 815Ah/dan "poslati" u bateriju

Tablica 4 Proračun broja potrebnih fotonapons	kih mo	dula										
P _{mo} (Wp)= 250				Napor	n baterije l	J _s (V) =	48	Modula / Stringu n _{MS =} 10				10
Sve su jedinice za energiju na dnevnoj razini	Jan	Feb	Mrz	Apr	Mai	Juni	Juli	Aug	Sep	Okt	Nov	Dez
Potrebno dnevno punjenje baterija Q _L (Ah)	815	815	815	815	815	815	815	815	815	815	815	815
Izvor pomoćne energije E _H (Wh) = 7.500 W * 3 h	22500	22500	22500	22500	22500	22500	22500	22500	22500	22500	22500	22500
Pomoćni izvor $Q_H = E_H / (1, 1 \cdot U_S)$ (Ah)	426,1	426,1	426,1	426,1	426,1	426,1	426,1	426,1	426,1	426,1	426,1	426,1
Energija iz panela Q _{PV} = Q _L - Q _H (Ah)	388,7	388,7	388,7	388,7	388,7	388,7	388,7	388,7	388,7	388,7	388,7	388,7
Energija zračenja na modul snage 1kWp Y _F (kWh/1kWp)	1,96	2,77	3,79	4,31	4,89	5,01	5,32	4,79	4,09	3,10	2,14	1,72
Energija zračenja po stringu E _{DC-S} = n _{MS} ·P _{Mo} *Y _F (Wh)	4900	6925	9475	10775	12225	12525	13300	11975	10225	7750	5350	4300
Energija zračenja po stringu Q _S = E _{DC-S} /(1,1·U _S) (Ah)	92,8	131,2	179,5	204,1	231,5	237,2	251,9	226,8	193,7	146,8	101,3	81,4
Broj potrebnih paralelnih stringova n _{SP} = Q _{PV} / Q _S	4,2	3,0	2,2	1,9	1,7	1,6	1,5	1,7	2,0	2,6	3,8	4,8
Broj paralelnih stringova u postrojenju: Maximum(n _{sP}), za	oj:								n _{sP} =	2		
Ukupan broj modula:										n _M = n	_{MS} ∙n _{SP} =	20
Snaga fotonaponskog polja (Wp):												5000
Potrebna površina za panele (m2)):												34

★ Broj modula je prostorom limitiran na 20 komada

Dio energije koji je potreban za projektiranu potrošnju daje generator 7,5kW; generator radi 3 h /dan

- 5. Korak: Usklađivanje komponenata sustava kontrola ograničenja
 - Punjač baterija mora osigurati struju punjenja 10-15% od kapaciteta baterija (baterija 100Ah se puni s 10-15A)
- 6. Korak: Kupac dobiva informaciju o rješenju
 - **×** Glavne komponente

Fotonaponski moduli	20 komada
Nadzornik baterija BMV600s / Digital multi control	1 set
Izmjenjivač Multiplus 48/5000	2 komada
Blue solar grid inverter 5000	1 komad
Gel baterija 12V 220Ah C20 (48V/1320Ah)	24 komada
Generator 7,5kVA, 1500 rpm	1 komad

ZADACI ZA UČENIKE I NASTAVNIKE

Za vikendicu ili kuću napravite proračun za otočnu elektranu prema potrošačima koje imate u kući. Svaki potrošač ima definiranu snagu, ako zbrojimo snagu svih potrošača to će biti snaga cijelog otočnog sustava. Potrebno je odrediti broj modula i svih drugih komponenti koji čine otočnu elektranu. Tablice koje se nalaze ispod služe kao vodič kako doći do cjelovitog rješenja. Otočnu elektranu možete projektirati u programu PVSOL.

1. Parametri željene elektrane otočno sustava

Popis potrošača električne energije za otočne sustave										
Uređaj	Snaga (kW)	Vrsta el. energije (230/24/12 V)	Sati rada dnevno	Potreba energija (kWh)						
Ukupno KWh, 230 V/50 Hz	Ukupno KWh	24 V	Ukupno K	Wh 12V						

Željeno vrijeme autonomije (dana)				Koliko često su	ıstav radi?		
Postoji li agregat?		Proizvođ	ač		Тір	Snaga, kW	

Odabir regula	atora pun <u>:</u>	jenja	– otočr	ni sustav							
proizvođač				tip			kat. br.				
N	lapon sust	tava		V	f	aktor ko	risnosti η				
ula	azni napor	n Uu		V	najv	eća ulaz	na struja				А
							I_{DCu}				
izli	azni napoi	n Ui		V	najv	eća izlaz	na struja I _{DCi}				A
snaga	a punjenja	a P _p		W	sn	aga regu	Ilatora P _R				W
Prikaz podata	aka [A	NE	cijena			€				kn
Odabir akum	ulatora –	otoč	ni								
proizvođač				tip			kat. br.				
vrsta	Olovni –	plitk	i ciklus	Olov	/ni – du ciklus	ni – duboki Ni-Cd ciklus					
l	nazivni na	ipon		V			kapacitet				Ah
temperaturni korekcijski faktor k _{Te}					najveće dopušteno pražnjenj				e p _d		
Coulombova	(Ah) učin	kovit	ost bate	erije η _{ΒΑΤ}	unutarnji otpor						mΩ
struja kra	itkog spoj	a I _k		А	S	struja pra	ažnjenja I _p				А
dimer	nzije I x b	x h				mm	masa				kg
	cij	ena					€	-			kn
Odabir pretv	arača – ot	:očni	sustav								
proizvođač				tip			kat. br.				
trajn	o optereć	enje		W	preop	oterećen	je t = 30 m	nin			W
preoptere	éenje t =	5 s		W		faktor k	orisnosti η				
ро	otrošnja u	miro (Sta	vanju ndby)	W	ekvencija (Hz)/valni oblik				5	0/sinus	
napor	n baterije			V	napo	n ponov	nog uključe	enja	n		V
izlaz	ni napon			V	etekcija	a optered	čenja - pod	esiva			
temperatura	a okoline		od	do °C		duljin	a vodiča ba	iterija			m

presjek vodiča baterija	mm ²	cijena	€	kn
-------------------------	-----------------	--------	---	----

Zaključak

Ovaj modul iz Obnovljivih izvora energije je generički namijenjen za predstavljanje novih dostignuća i promjena u struci nastavnicima koji bi ih trebali implementirati u vlastitoj nastavi i praksi. Prikazali smo fotonaponski sustav koji može biti spojen na energetsku mrežu RH preko kućne instalacije, te smo objasnili sustave za otočne elektrane koji nisu spojeni na energetsku mrežu RH. Takvi sustavi se danas postavljaju gdje električna mreža nije dostupna. Dali smo smjernice kako osmisliti projekt prema potrebi naručitelja. Osim teorijske nastave u ovom modulu postoji dio koji se odnosi na praktičnu nastavu. Spajaju se dvije elektrane, jedna preko kućne instalacije, a druga otočna koja se proračunava prema potrebama naručitelja. Postoje i dodatne mogućnosti preko hibridnih sustava za dijelove kućanstva koji nisu spojeni na električnu mrežu RH. Tu ćemo prikazati kako mali vjetroagregati ili gorivni članci pogonjeni vodikom mogu biti dio hibridnog sustava koji bi bio 100 % autonoman.

Osim navedenih pisanih materijala postoje izrađene prezentacije koje prate sve sadržaje prikazane u ovom izbornom modulu.

LITERATURA

- [1] United nations framework convention on climate change, http://unfccc.int/
- [2] United Nations Framework Convention on Climate Change Status of Ratification, UN, http://unfccc.int/resource/conv/ratlist.pdf, 2001.
- [3] Kyoto Protocol Status of Ratification, UN, <u>http://unfccc.int/resource/kpstats.pdf</u>, 2002.
- [4] Duić N., Juretić F., Zeljko M., Bogdan Ž., Kyoto protocol objectives in Croatia energy planning, http://powerlab.fsb.hr/neven/papers/madeira2000croatia.pdf, 2000.
- [5] Duić N., Juretić F., Zeljko M., Bogdan Ž., Kyoto protocol objectives in Croatia energy planning: Nuclear scenario, http://powerlab.fsb.hr/neven/papers/CNS2002.pdf, 2002.
- [6] Vuk B., Marušić D., ENERGIJA u Hrvatskoj: godišnji energetski pregled: 1996. 2000.,Ministarstvo gospodarstva Republike Hrvatske, Zagreb, 2001.
- [7] Božić H. et al., Analiza potrošnje energije u kućanstvima grada Zagreba u 1988. godini, Energetska bilanca grada Zagreba, Energetski institut "Hrvoje Požar", Zagreb, 2001
- [8] The First National Communication of The Republic of Croatia to the United Nations Framework Convention On Climate Change (UNFCCC), Ministry of Environmental Protection and Physical Planning, Republic of Croatia, 2001, http://unfccc.int/resource/docs/natc/cronc1.pdf, 2001.
- [9] Assessment of Potential for the Saving of Carbon Dioxide Emissions In European Building Stock, Caleb Management Services, http://www.eurima.org/downloads/caleb1.pdf, 1988
- [10] Energy Efficiency Through Insulation: The Impact on Global Climate Change, North American Insulation Manufacturers Association, Geneva, 1996.
- [11] Proposal for a Directive of The European Parliament and of The Council on The Energy Performance of Buildings, Commission of The European Communities, Brussels, 2001.
- [12] The Lisbon Declaration II of the International Insulation Industry on CO₂ reductions, http://www.eurima.org/downloads/lisbon2.pdf, 2000.
- [13] Maleš N., Predavanja i vježbe, Obnovljivi izvori energije Veleučilište Bjelovar, 2020.